Assessment Schedule – 2013

Physics: Demonstrate understanding of mechanics (91171)

Evidence Statement

	Achievement	Merit	Excellence
ONE (a)			
(b)	$v = \frac{2\pi r}{T} = \frac{2\pi \times 4}{15} = 1.68 \text{ ms}^{-1}$ OR Used incorrect value of "v" to calculate F _c	$F_{\rm c} = \frac{mv^2}{r} = \frac{65 \times 1.68^2}{4} = 45.6 \text{ N}$ $= 46 \text{ N}$ $**Use R for rounding error$	
(c)	$v_f = v_i + at$ $0 = v_i - 2.5 \times 4.2$ $v_i = 10.5 m s^{-1}$	Added $(44.1 + 22.05)$ to get incorrect answer of 66.15 m * <i>circle</i> + <i>sign</i> <i>OR</i> <i>Assumed</i> $v_i = 0$ and worked out answer.	$d = v_{i}t + \frac{1}{2}at^{2}$ $d = 10.5 \times 4.2 - \frac{1}{2} \times 2.5 \times 4.2^{2}$ $d = 44.1 - 22.05$ $d = 22.05 \text{ m}$ OR $d = \frac{v_{f} - v_{i}}{2}t$ $d = \frac{10.5 + 0}{2} \times 4.2$ $d = 22.05 \text{ m}$
(d)	 ONE OF: Net force = 0. Reaction force acts at 90° to surface. Friction acts upwards along surface. F_R F_f Closed triangle to show balanced forces with correct labels F_R F_f 	TWO OF: • Net force = 0. • Reaction force acts at 90° to surface AND Friction acts upwards along surface. $F_{R} \longrightarrow F_{f}$ (** No contradictory vectors) • Closed triangle to show balanced forces with correct labels $f_{R} \longrightarrow F_{f}$	 ALL OF: Net force = 0. Reaction force acts at 90° to surface AND Friction acts upwards along surface. F_R F_f Closed triangle to show balanced forces with correct labels. Or shows that sum of horizontal and vertical components add to zero. F_R F_f

TWO (a)	$F_{g (lame)}$ $F_{g (see-saw)}$ $F_{g (back)}$ F	All four vectors correctly drawn and labelled. <i>F</i> _s must be larger .	
(b)	$(30 \times 9.8 \times 1.5) + F \times 1.5$ = 72 × 9.8 × 1.5 441 × F × 1.5 = 1058 OR (450 + F × 1.5 = 1080) OR 294 + F _s = 705.6 OR Taking moments / calculating torques wrt to Dad's end: $(30 \times 9.8 \times 3.0) + (60 \times 9.8 \times 1.5) - (F_S \times 1.5) = 0$ where F _s is the support force at the pivot when Dad's end is on the ground 882 + 882 = 1.5 F _s hence F _s = 1764 ÷ 1.5 = 1176 N	$F \times 1.5$ = 72 × 9.8 × 1.5 - 30 × 9.8 × F × 1.5 = 1058.4 - 441.0 F × 1.5 = 617.4 OR (F × 1.5 = 630) OR Total F _{UP} = total F _{DOWN} F _S + F _{GROUND} = (30 × 9.8) + (60 × 9.8) + (72 × 9.8) = 294 + 588 + 706 = 1588 N	$F = \frac{617.4}{1.5} = 411.6 \text{ N}$ OR (F = 420 N) OR Hence F _{GROUND} = 1588 - 1176 = 412 N
(c)	 TWO of: The only unbalanced force acting on the ball is the force of gravity. Gravity acts downwards. This unbalanced force causes the ball to decelerate or accelerate downwards. Velocity at the top is zero. 	The only unbalanced force acting on the ball is gravity , which acts downwards. This causes the ball to decelerate or accelerate downwards. Hence the ball slows down to a stop when it reached maximum height.	
(d)	$v_{\text{horizontal}} = 6.5 \cos 60 = 3.25 \text{ m s}^{-1}$ OR $v_{\text{vertical}} = 5.63 \text{ m s}^{-1}$ **Watch out for values being swapped around.	$v_{\text{horizontal}} = 6.5 \cos 60 =$ 3.25 m s ⁻¹ AND $v_{\text{vertical}} = 5.63 \text{ m s}^{-1}$ AND $t = \frac{d}{v} \rightarrow \frac{3.0}{3.25} = 0.923 \text{ s}$ OR Time to reach max height = 0.57s, so max height = 1.6m, so will go only 1.85 m across and so will not go through hoop.	$d = v_i t + \frac{1}{2} a t^2$ $d = 5.63 \times 0.923 - 0.5 \times 9.8 \times 0.923^2$ d = 1.02m This is less than 1.35 m hence ball will not go through hoop. OR Vertical velocity at 1.35 m height v = 2.29 ms-1 Time taken for v _f to reach 2.29ms ⁻¹ $v_f = v_i + at$ $\pm 2.29 = 5.63 - 9.8t$ $t = \frac{5.63 \pm 2.29}{9.8} = 0.808 \text{ s or } 0.34 \text{ s}$

			Horizontal distance travelled in 0.808s or 0.34 s or 1.12 m This is less than 3.00 m, so ball will not go through the hoop.
THRE E (a)	p = mv $p = 305 \times 2.4 = 732 \text{ kg m s}^{-1}$ $p = 730 \text{ kg m s}^{-1}$ OR Accept both done separately (576 kgms ⁻¹ and 156 kgms ⁻¹)		
(b)	 ONE OF: Rubber bumpers reduce the force. By increasing the time of impact. Since change in momentum is the same. OR Rubber bumpers move a distance when compressed, so for the same amount of work done or energy changed, or the same change in velocity, acceleration is decreased due to longer time less force is used. 	 TWO OF: Rubber bumpers reduce the force. By increasing the time of impact. Since change in momentum is the same. OR Rubber bumpers move a distance when compressed, so for the same amount of work done or energy changed, or the same change in velocity, acceleration is decreased due to longer time less force is used. 	 Rubber bumpers reduce the force. The rubber compresses to increase the time of impact. Since change in momentum is the same. OR Rubber bumpers move a distance when compressed, so for the same amount of work done or energy changed, or the same change in velocity, acceleration is decreased due to longer time less force is used.
(c)	Momentum is conserved $(240 + 65) 2.4 \rightarrow +(240 + 58)2.7$ $\leftarrow = (480 + 65 + 58)v$ $732 \rightarrow +804.6 \leftarrow = 603v$ OR Solved without adding mass of cart 156 - 156.6 = 0.6 OR Gets 2.5 ms ⁻¹ by adding	$732 \rightarrow +804.6 \leftarrow = 603v$ $72.6 \leftarrow = 603v$ OR Found velocity without taking mass of cart into consideration $(v = 4.9 \times 10^{-3} \text{ ms}^{-1})$	$v = 72.6 / 603 = 0.12 \text{ m s}^{-1} \leftarrow$
(d)(i)	$E_{p} = \frac{1}{2}kx^{2}$ $E_{p} = \frac{1}{2} \times 78000 \times 0.15^{2}$ $E_{p} = 877.5 \text{ J}$ $E_{p} = 880 \text{ J}$		

(ii)	$E_{\rm p} = 877.5 \text{ J}$ $F = kx = 78000 \times 0.15$ F = 11700 N OR average force = 5850 N OR 9360 with no units	$I = F\Delta t$ $I = 11700 \times 0.80$ I = 9360 N s OR I = 4680 N s OR $I = 1463 \text{ kgms}^{-1}$	
------	--	--	--

For each question:

N0	N1	N2	A3	A4	M5	M6	E7	E8
No evidence	la	2a	3a	4a	3a+1m	2a + 2m	2m + 1e	1m+2e

**Other combinations are possible, but to get M5 or M6 at least one merit question should be correct. To get E7 or E8 at least one excellence question should be correct.

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 7	8 – 14	15 – 19	20 – 24