Assessment Schedule - 2016 ## Physics: Demonstrate understanding of mechanics (91171) ## **Evidence Statement** | Q | Evidence | Achievement | Merit | Excellence | |----------------|---|---|---|---| | ONE (a) | $v_{\rm f}^2 = v_{\rm i}^2 + 2ad$
$1.5^2 = 2 \times a \times 0.50$
$a = 2.3 \text{ m s}^{-2}$ | Correct answer. | | | | (b) | $m_{\rm r}v_{\rm r} + m_{\rm b}v_{\rm b}$ before = $m_{\rm r}v_{\rm r} + m_{\rm b}v_{\rm b}$ after
$(0.050 \times 1.5) + 0 = (0.040 \times 1.2) + (0.05 \times v)$
$v = 0.54 \text{ m s}^{-1}$ | Correct equation and correct substitution. | Correct answer. | | | (c) | $\Delta p = 0.04 \times 1.2 = 0.048$
OR $\Delta p = 0.05 \times (1.5 - 0.54) = 0.048$
$\Delta p = F \times t$
$0.048 = F \times 0.08$
F = 0.60 N | Change in momentum calculated for either car. OR Acceleration calculated for either car if $F = ma$ used. | Correct answer. | | | (d)(i)
(ii) | Centripetal or friction force, acting towards the centre. as this force is acting towards the centre of the circle, it changes the direction of the car's velocity (makes the car go around the circle). as this force is acting at 90° to the direction of travel of the car, it does not change the size of the velocity. | Correct name and correct direction of the force. OR One correct effect of the force. | Correct name and correct direction of the force. AND ONE correct effect of the force with reason. | Correct name and correct direction of the force. AND BOTH correct effects of the force. | | Not Achieved | | Achiever | nent | Achievemer | nt with Merit | Achievement with Excellence | | | |------------------------------------|---|---|---|--|--------------------------------------|---|--|---| | NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 | | No response; no relevant evidence. | Very little
Achievement
evidence. | Some evidence at the
Achievement level,
but most is at the Not
Achieved level. | A majority of the evidence is at the Achievement level. | Most evidence is at the Achievement level. | Some evidence is at the Merit level. | A majority of the evidence is at the Merit level. | Evidence is provided
for most tasks. The
evidence at the
Excellence level may
have minor errors, or
the evidence is weak. | Evidence is provided for most tasks and the evidence at the Excellence level is accurate. | | Q | Evidence | Achievement | Merit | Excellence | |---------|---|---|--|----------------------------| | TWO (a) | $v_v = 20 \times \sin 40^\circ = 12.856$
= 12.9 m s ⁻¹ | Correct working. | | | | (b) | $v_f = v_i + at$
$0 = 12.9 + -9.8 \times t$
$t = 1.32 \text{ s (or } 1.31 \text{ if unrounded } v_v \text{ used)}$ | Correct equation and correct substitution. | Correct answer. | | | (c) | time of flight = $2t = 2 \times 1.32 = 2.64$ s (or 2.62 if unrounded)
$v_{\rm H} = 20 \times \cos 40^{\circ} = 15.32 = 15.3$ m s ⁻¹
$d_{\rm H} = v_{\rm H} \times \text{time of flight}$
= 15.3×2.64
= 40.4 m (or 40.2 if unrounded) | Correct total time. OR Correct horizontal velocity. | Correct answer. | | | (d) | Horizontal velocity remains constant, as there are no external forces in the horizontal direction, air resistance is negligible. Going up, vertical velocity decreases/ball decelerates as the weight force/gravity acts downwards/in an opposite direction to the motion Coming downwards, the vertical velocity increases/ball accelerates as the weight force/gravity is acting downwards/in the same direction as the motion. | ONE correct statement with correct reason. OR Correct description of both velocities. | TWO correct statements with correct reasons. | Comprehensive explanation. | | Not Achieved | | | Achiever | nent | Achievemen | t with Merit | Achievement v | with Excellence | |------------------------------------|---|---|---|--|--------------------------------------|---|---|---| | NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 | | No response; no relevant evidence. | Very little
Achievement
evidence. | Some evidence at the
Achievement level,
but most is at the Not
Achieved level. | A majority of the evidence is at the Achievement level. | Most evidence is at the Achievement level. | Some evidence is at the Merit level. | A majority of the evidence is at the Merit level. | Evidence is provided
for most tasks. The
evidence at the
Excellence level may
have minor errors, or
the evidence is weak | Evidence is provided
for most tasks and the
evidence at the
Excellence level is
accurate. | | Q | Evidence | Achievement | Merit | Excellence | |-----------|--|--|---|-----------------| | THREE (a) | $\tau = F \times d$
= 50 × 9.8 × 3.0 = 1470 N m = 1500 N m | Correct answer with correct units. | | | | (b) | Force at support A must be downwards. So the torque by the Force at A is in an opposite direction (anticlockwise) to the total clockwise torque created by Sarah and the weight force of the board. | Correct direction (with an attempt to give some correct explanation). | Correct answer with correct reasoning. | | | (c) | F = kx
$k = \frac{F}{x} = \frac{50 \times 9.8}{0.05} = 9800 \text{ N m}^{-1}$ | Incorrect answer due to mass used as opposed to correctly using (weight) force. | Correct answer. | | | (d) | • $E_p = \frac{1}{2}kx^2 = \frac{1}{2} \times 9800 \times 0.25^2 = 306 \text{ J}$
• $E_k = E_p$
• $\frac{1}{2}mv^2 = 306 \text{ J}$
so
$v = 3.5 \text{ m s}^{-1}$ | Elastic potential energy is correctly calculated. OR Idea that the kinetic energy changes into elastic potential energy. | Elastic potential energy is correctly calculated. AND Idea that the kinetic energy changes into elastic potential energy. | Correct answer. | | Not Achieved | | Achievei | ment | Achievemer | t with Merit | Achievement v | with Excellence | | |------------------------------------|---|---|---|--|--------------------------------------|---|---|---| | NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 | | No response; no relevant evidence. | Very little
Achievement
evidence. | Some evidence at the
Achievement level,
but most is at the Not
Achieved level. | A majority of the evidence is at the Achievement level. | Most evidence is at the Achievement level. | Some evidence is at the Merit level. | A majority of the evidence is at the Merit level. | Evidence is provided
for most tasks. The
evidence at the
Excellence level may
have minor errors, or
the evidence is weak | Evidence is provided
for most tasks and the
evidence at the
Excellence level is
accurate. | ## **Cut Scores** | Not Achieved | Achievement | Achievement with Merit | Achievement with Excellence | |--------------|-------------|------------------------|-----------------------------| | 0 – 6 | 7 – 13 | 14 – 18 | 19 – 24 |