Assessment Schedule – 2014

Mathematics and Statistics: Apply algebraic methods in solving problems (91261) Evidence Statement

One	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	$\frac{a^{12}}{125}$	Correct.		
(ii)	$0.5x^{1.5}$ or $0.5x^{\frac{3}{2}}$	Correct equivalent.		
(iii)	$\frac{2x^2}{3x^{-8}} = \frac{2}{3} \left(x^{10} \right)$	Numerator or denominator correct.	Correct expression.	
(b)	Let the roots be <i>n</i> and 3 <i>n</i> . $3n^2 = 12$ $n^2 = 4$ $n = \pm 2$ $4n = \pm m$ $m = \pm 8$	Relationship shown.	Values of <i>n</i> found.	Values of <i>m</i> found.
(c)	$3x^{2} - nx + 5 = 0$ For 2 solutions $n^{2} - 4 \times 3 \times 5 > 0$ $n^{2} > 60$ n > 7.7 or n < -7.7	Discriminant given.	One value of <i>n</i> found.	Both parts of inequality given.
(d)	$(5x2 - 4)(2x2 - 1)x2 = 0.8 or 0.5x = \pm 0.894 or \pm 0.707$	Expression factorised.	Solved for x^2 .	All solutions given.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	Attempt at one question	1 of u	2 of u	3 of u	1 of r	2 of r	l of t	2 of t

Two	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	(3a-5)(4a+3) $a=\frac{5}{3}$ or $-\frac{3}{4}$	Correct factorising or solution.	Correct solution showing factorisation.	
(b)(i)	$\frac{3x+3-4x^2+8x}{(x-2)(x+1)} = \frac{-4x^2+11x+3}{x^2-x-2}$	Correct single fraction	Correctly simplified. Accept with denominator in factorised form.	
(ii)	$\frac{(x+4)(x-2)}{(x+1)(x-2)} = 3$ x+4=3x+3 if x \ne 2 2x=1 x=0.5	Factorised and simplified CAO.	Solved for <i>x</i> .	Condition $x \neq 2$.
(c)(i)	$rx^{2} - tx - h = 0$ $x = \frac{t \pm \sqrt{t^{2} + 4rh}}{2r}$		Answer with ± before surd.	
(ii)	h = ax(x-12) when $x = 6, h = 6$ $6 = 6a \times -6$ $a = -\frac{1}{6}$ $h = -\frac{1}{6}x(x-12)$ Or $y = -\frac{1}{6}x^{2} + 2x$	General form of equation and recognition of point (6,6).	Correct equation.	
(iii)	$h = -\frac{1}{6}x(x-12) = 1.9$ -x ² + 12x - 6 × 1.9 = 0 x = 1.04, 10.96 width of lane 4.955 m		Solved for height of 1.9 m.	Correct width of lane found.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	Attempt at one question	l of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

Three	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	$3^x = 81$ $x = 4$	Correctly solved.		
(ii)	$343 = x^3$ $x = 7$	Correctly solved.		
(b)	$\left(\frac{5}{4}\right)^{x} = 15$ $x \log 1.25 = \log 15$ $x = \frac{\log 15}{\log 1.25}$ $x = 12.14$	Expression simplified.	Written in log form.	<i>x</i> found.
(c)(i)	0.8 is the fraction of medication remaining after an hour.	Correct explanation.		
(ii)	$M = 224 \times 0.8^{t-0.5}$ = 224 × 0.8 ^{-0.5} = 250.4 mg	Statement with $t = 0$ and attempt to solve.	Correctly solved.	
(iii)	$49.6 = 250.4 \times 0.8^{t}$ $0.8^{t} = \frac{49.6}{250.4}$ $t \log 0.8 = \log \frac{49.6}{250.4}$ $t = 7.25 \text{ hours}$	M = 49.6 recognised and attempt to solve.	Correctly used logs in attempt to solve	Correctly solved.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	Attempt at one question	1 of u	2 of u	3 of u	1 of r	2 of r	l of t	2 of t

Cut Scores

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 - 8	9 – 14	15 – 18	19 – 24