Assessment Schedule – 2019

Mathematics and Statistics: Apply algebraic methods in solving problems (91261)

Assessment Criteria

Achievement	Achievement with Merit	Achievement with Excellence
<i>Apply algebraic methods in solving problems</i> involves:	Apply algebraic methods, using relational thinking, in solving problems must involve one or more of:	Apply algebraic methods using extended abstract thinking, in solving problems involves one or more of:
 selecting and using methods demonstrating knowledge of algebraic concepts and terms communicating using appropriate 	 selecting and carrying out a logical sequence of steps connecting different concepts or representations 	 devising a strategy to investigate or solve a problem identifying relevant concepts in context
representations.	 demonstrating understanding of concepts forming and using a model 	 developing a chain of logical reasoning, or proof forming a generalisation
	and also relating findings to a context, or communicating thinking using appropriate mathematical statements.	and also using correct mathematical statements or communicating mathematical insight.

Evidence

ONE	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	$3x^2 - 7x - 6 = (3x + 2)(x - 3) = 0$	Correct solutions.		
	$x = \frac{-2}{3}$, 3 or equivalent.			
(a)(ii)	$5x^2 - 4x - 3 = 0$	Correct solutions.		
	x = 1.27, -0.47 or equivalent.			
(b)	$5.05 = 0.02t^2 - 0.6t + 9.18$	Quadratic equation	Correct answer.	
	$0.02t^2 - 0.6t + 4.13 = 0$	set equal to 0.		
	<i>t</i> = 10.7, 19.3 Hence <i>t</i> = 10.7 months (cannot be 19.3)			
(c)	Discriminant $\Delta = b^2 - 4ac = 0$	Sets up discriminant equal to 0.	Sets up quadratic equation equal to 0.	Correct solution
	$(m+1)^2 - 4(2m-1)(m-4) = 0$	- quarter of		explanation of the
	$7m^2 - 38m + 15 = 0$			rejection of $m = \frac{3}{7}$.
	(7m-3)(m-5) = 0			
	m = 5			
	$(\frac{3}{7} \text{ eliminated as } m - 4 \text{ must be at least } 0$			
	since the expression is a perfect square)			

NCEA Level 2 Mathematics and Statistic	cs (91261) 2019 — page 2 c	of 4
--	----------------------------	------

(d)	$p^{2}x^{2} + 4px - 12 = (px + 6)(px - 2) = 0$ $x = \frac{-6}{p}, \frac{2}{p}$ Hence $\frac{2}{p} - \frac{-6}{p} = \frac{8}{p}.$	Factorises correctly or finds the difference between roots consistently.	The correct roots are found.	Finds the difference between the correct roots.
(e)	$y = x^{2} - bx - ax + ab - c^{2}$ $= x^{2} - (a + b) x + (ab - c^{2})$ $\Delta = (-(a + b))^{2} - 4 \times 1 \times (ab - c^{2})$ $= (a^{2} - 2ab + b^{2}) + 4c^{2}$ $= (a - b)^{2} + 4c^{2}$ As $(a - b)^{2} \ge 0$ and $c^{2} > 0$ then $\Delta > 0$ and hence there are two real distinct roots (and two distinct points where the graph crosses the <i>x</i> -axis). Graphical argument: "Since $f(x) = (x - a)(x - b)$ is a positive parabola which clearly has 2 roots and its graph crosses the <i>x</i> -axis at 2 distinct points, the function $g(x) = f(x) - c^{2}$, which must be lower since c^{2} must be positive, must also have 2 distinct roots (which would be further apart than a and b)."	Function is set up so that the discriminant can be found.	Finds discriminant in factored form.	Explains why the discriminant is greater than 0 and makes a correct conclusion. OR graphical argument is fully described.

N1	N2	A3	A4	M5	M6	E7	E8
A valid attempt at one question.	l of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

N0 = No response; no relevant evidence.

TWO	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	$9^{0.5}a^{1}b^{-2}$	Correct answer.		
	$=\frac{3a}{b^2}$			
(a)(ii)	$\left(\frac{3b^4}{2a}\right)^2 = \frac{9b^8}{4a^2}$	Correct answer.		
(b)	$\frac{2c+1}{(c+3)(c-3)} + \frac{c-1}{(c-3)(c-1)}$ $= \frac{(2c+1)(c-1) + (c-2)(c+3)}{(c+3)(c-3)(c-1)}$ $= \frac{3c^2 - 7}{(c+3)(c-3)(c-1)}$	Cross- arrangement to a single fraction.	Final simplification.	
(c)	fm - 2gm - 6gn + 3fn = m(f - 2g) + 3n(f - 2g) = (m + 3n)(f - 2g)	Pairs factored.	Complete factorisation.	
(d)	Small rectangle: Area = $y^2 - 8y = 9$ $y^2 - 8y - 9 = (y - 9)(y + 1) = 0 \Rightarrow y = 9$ Since $x = 2y - 6$ Large rectangle: Area = $(2y - 6)(2y - 10)$ $= 4y^2 - 32y + 60$ Hence Area = 96 cm ²	<i>y</i> found.		Area found.
(e)	Roots are $\frac{-p + \sqrt{p^2 - 4q}}{2}$ and $\frac{-p - \sqrt{p^2 - 4q}}{2}$ $-p + \sqrt{p^2 - 4q} = n(-p - \sqrt{p^2 - 4q})$ $\sqrt{p^2 - 4q} = \frac{p(1-n)}{(1+n)}$ $qn^2 + (2q - p^2)n + q = 0$	One root <i>n</i> times the other.	Successfully squares both sides.	Finds equation with correct algebraic working.

N1	N2	A3	A4	M5	M6	E7	E8
A valid attempt at one question	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

N0 = No response; no relevant evidence.

NCEA Level 2 Mathematics and Statistics	(91261) 2019 —	- page 4 of 4

THREE	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$\log_5 (m) = 3$ $\Leftrightarrow 5^3 = m \iff m = 125$	Correct answer.		
(b)	$\log 6 - 2 \log y$ $= \log \left(\frac{6}{y^2}\right)$	Correct answer.		
(c)	$\frac{3^{2n-1}+3^{2n+1}}{3^{2n}-3^{2n-4}} = \frac{3^{2n-4}(3^3+3^5)}{3^{2n-4}(3^4-1)}$ $= \frac{27+243}{81-1} = \frac{27}{8} \text{ or equivalent.}$	Correct answer only.	Finds common factor of numerator and denominator.	Correct answer.
(d)(i)	$3N_0 = N_0(1.053)^t$ $3 = (1.053)^t$ $\log (3) = t \log (1.053)$ $t = \frac{\log(3)}{\log(1.053)} = 21.27 \text{ weeks}$	Taking log of both sides and <i>t</i> as a factor.	Correct answer.	
(d)(ii)	$\frac{4250}{2500} = (1 + \frac{r}{100})^{10}$ $1 + \frac{r}{100} = \sqrt[10]{1.7} = 1.0545$ Hence r = 5.45 and rate of change is 5.45%.	Sets up correct equation.	Finds $1 + \frac{r}{100}$.	Percentage rate of change found.
(e)	$k = \frac{227 - 67}{(640)^2} = 0.000390625$ $h = 0.000390625 (x - 640)^2 + 67 = 100$ $0.000390625x^2 - 0.5x + 127 = 0$ x = 349.3, 930.7 m Required distance = 349.3 m		Finds <i>k</i> OR finds two consistent solutions from calculated <i>k</i> .	Correct answer.

N1	N2	A3	A4	M5	M6	E7	E8
A valid attempt at one question	l of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

N0 = No response; no relevant evidence.

Cut Scores

Not Achieved	Achievement Achievement with Merit		Achievement with Excellence
0 - 8	9 – 14	15 – 19	20 – 24