Assessment Schedule – 2013

Mathematics and Statistics: Apply calculus methods in solving problems (91262)

Evidence Statement

f'(x) = 8x - 5 f'(3) = 19 $g(x) = \frac{6x^3}{3} - 5x + 7$	Apply calculus methods in solving problems. Derivative found and gradient found.	Apply calculus methods, using relational thinking, in solving problems.	Apply calculus methods, using extended abstract thinking, in solving problems.
<i>f</i> '(3) = 19			
$g(x) = \frac{6x^3}{3} - 5x + 7$			
5	Anti-derivative and function found OR equivalent.		
h'(t) = 90 - 10t = 0 t = 9 h(9) = 407	Derivative found and equated to 0.	Time for maximum and the height found. Units not required.	
g'(t) = -0.01t + 0.15 = 0.04 t = 11	Derivative found and equated to 0.04.	Time calculated. Units not required.	
$g'(x) = -3x^{2} + 3 = 0$ 3(1 + x)(1 - x) = 0 x = -1, 1 x < -1, x > 1 Check gradient: $g'(0) = 3 > 0 \implies \text{increasing.}$ OR shape of graph -ve cubic	Derivative found and = 0 or < 0.	x values of turning point found.	Regions correctly identified and justified.
$f(x) = \frac{mx^2}{2} + 2x + c$ $10 = 2m + 4 + c$ $c = 6 - 2m$ $-8 = \frac{m}{2} - 2 + c$ $c = -6 - \frac{m}{2}$ $-6 - \frac{m}{2} = 6 - 2m$ $\Rightarrow m = 8$ $f(x) = 4x^2 + 2x + c$ $10 = 16 + 4 + c$ $c = -10$	Equation found in terms of <i>m</i> and equated to 10.	Value of <i>m</i> or <i>c</i> found.	Equation of curve found.
	h'(t) = 90 - 10t = 0 t = 9 h(9) = 407 g'(t) = -0.01t + 0.15 = 0.04 t = 11 $g'(x) = -3x^{2} + 3 = 0$ 3(1 + x)(1 - x) = 0 x = -1, 1 x < -1, x > 1 Check gradient: $g'(0) = 3 > 0 \implies \text{increasing.}$ OR shape of graph -ve cubic. $f(x) = \frac{mx^{2}}{2} + 2x + c$ 10 = 2m + 4 + c c = 6 - 2m $-8 = \frac{m}{2} - 2 + c$ $c = -6 - \frac{m}{2}$ $-6 - \frac{m}{2} = 6 - 2m$ $\implies m = 8$ $f(x) = 4x^{2} + 2x + c$ 10 = 16 + 4 + c	Joint OR equivalent. $h'(t) = 90 - 10t = 0$ $t = 9$ $h(9) = 407$ Derivative found and equated to 0. $g'(t) = -0.01t + 0.15$ $= 0.04$ Derivative found and equated to 0.04. $t = 11$ Derivative found and equated to 0.04. $g'(x) = -3x^2 + 3 = 0$ $3(1 + x)(1 - x) = 0$ $x = -1, 1$ $x < -1, x > 1$ Derivative found and $= 0$ or < 0 .Check gradient: $g'(0) = 3 > 0 \Rightarrow$ increasing. OR shape of graph -ve cubic.Derivative found in terms of m and equated to 10. $f(x) = \frac{mx^2}{2} + 2x + c$ $10 = 2m + 4 + c$ $c = -6 - \frac{m}{2}$ $-6 - \frac{m}{2} = 6 - 2m$ $\Rightarrow m = 8$ $f(x) = 4x^2 + 2x + c$ $10 = 16 + 4 + c$ $c = -10$ Equation found in terms of m and equated to 10.	OR equivalent. $h'(t) = 90 - 10t = 0$ $t = 9$ $h(9) = 407$ Derivative found and equated to 0.Time for maximum and the height found. Units not required. $g'(t) = -0.01t + 0.15$ $= 0.04$ Derivative found and equated to 0.04.Time calculated. Units not required. $g'(t) = -0.01t + 0.15$ $= 0.04$ Derivative found and equated to 0.04.Time calculated. Units not required. $g'(t) = -3x^2 + 3 = 0$ $3(1 + x)(1 - x) = 0$ $x = -1, 1$ Derivative found and $= 0 \text{ or } < 0.$ x values of turning point found. $S(0) = 3 > 0 \Rightarrow$ increasing.Derivative found in terms of m and equated to 10. x values of turning point found. $f(x) = \frac{mx^2}{2} + 2x + c$ $10 = 2m + 4 + c$ $c = 6 - 2m$ $\Rightarrow m = 8$ $f(x) = 4x^2 + 2x + c$ $10 = 16 + 4 + c$ $c = -10$ Equation found in terms of m and equated to 10.Value of m or c found.Value of m or c found.

NØ no response; no relevant evidence N1 attempt at one question

N2 1 of u A3 2 of u

A4 3 of u

M51 of r

M6 2 of r

E7 1 of t

E8 2 of t

Evidence Statement

TWO		Achievement	Merit	Excellence
(a)		Correct curve and <i>x</i> intercepts, and <i>y</i> intercept negative.		
(b)	$d'(t) = \frac{1}{2}t + 1$ d'(5) = 3.5	Derivative and rate found. Units not required		
(c)	$\frac{dA}{dr} = 2\pi r$ For given area $r = 7$ Rate of change = 14π or 43.99.	Derivative found and attempt to find <i>r</i> using the correct equation.	<i>r</i> found and rate of change calculated.	
(d)	h(x) -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	–ve parabola.	Negative parabola with maximum at (4,5).	Correct parabola and passing through intercept (0,-1).
(e)	$6x^{2} - 12x = 0$ 6x(x - 2) = 0 x = 0, 2 Min at x = 2 Hence passes through (2,10) $y = 2x^{3} - 6x^{2} + c$ $10 = 2 \times 8 - 24 + c$ c = 18 $y = 2x^{3} - 6x^{2} + 18$	x values of turning points identified. OR Correct integration set equal to 10.	Minimum turning point at $x = 2$ identified and justified and the point (2,10) use	Equation of curve found.
(f)	$v = -0.04t^{2} + c$ $5 = -0.04 \times 3^{2} + c \implies c = 5.36$ $s = \frac{-0.04t^{3}}{3} + 5.36t + c$ c = 0 $-0.04t^{2} + 5.36 = 0$ $t^{2} = 134$ t = 11.58 s(11.58) = 41.4	Velocity function formed.	Distance function formed.	Distance found.

NØ no response; no relevant evidence N1 attempt at one question

N1 attemp N2 1 of u

A3 2 of u A4 3 of u

M5 1 of r

M6 2 of r

E71 of t

E8 2 of t

Evidence Statement

THREE		Achievement	Merit	Excellence
(a)	$f(x) = 2x^{2} + 3x + c$ c = 0 f(-3) = 9 Hence (-3,9)	Anti-derivative given and point found.		
(b)(i)	g'(x) = x - 5 = 2 $x = 7$	Gradient function and solution found.		
(b)(ii)	g'(8) = 8 - 5 = 3 y + 8 = 3(x - 8) y = 3x - 32		Equation of tangent formed.	
(c)	$h'(x) = \frac{2}{5}x - 2$ $h(x) = \frac{x^2}{5} - 2x + c$ Through (5,6) c = 11 $h(x) = \frac{x^2}{5} - 2x + 11$	Equation of line found and anti-differentiated.	Equation of curve given OR equivalent.	
(d)	f'(x) = 2Px + Q = 0 $f'\left(\frac{2}{3}\right) = \frac{4P}{3} + Q = 0$ 9 = P + Q + 2 $\Rightarrow Q = 7 - P$ P = -21 Q = 28 $f(x) = -21x^{2} + 28x + 2$ f(3) = -103 Hence (3,-103)	Derivative found and equated to 0.	<i>P</i> or <i>Q</i> calculated.	P and Q found and coordinates calculated.
(e)	$L = 12x + 4h$ $h = \frac{L - 12x}{4}$ $v = \frac{Lx^2}{2} - 6x^3$ For max $\frac{dV}{dx} = 0$ $Lx - 18x^2 = 0$ $x = \frac{L}{18}$ Hence length is $2x = \frac{2L}{18} = \frac{L}{9}$	Attempted to find an equation in one variable and successfully differentiated.	Equation for volume found and differentiated and set equal to 0.	Found the value for <i>x</i> , ie $x = \frac{L}{18}$

NØ no response; no relevant evidence N1 attempt at one question N2 1 of u A3 2 of u A4 3 of u M5 1 of r M6 2 of r E7 1 of t E8 2 of t

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 7	8 – 14	15 – 19	20 – 24