Assessment Schedule - 2018

Mathematics and Statistics: Apply calculus methods in solving problems (91262)

Assessment Criteria

Q	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$f'(x)=3x^{2}-6$ $f'(4)=3\times 16-6$ $=42$	Derivative AND gradient found.		
(b)	Let the width of the rectangle be w cm and the area be A cm ² . Then $A = 3w^2$ A = 75 means $w = 5\frac{dA}{dw} = 6wso rate of change of area = 30 cm2 / cm when A = 75.$	Expression found for $\frac{dA}{dw}$.	Rate of change found.	
(c)	$f(x) = \frac{-3}{3}x^3 + \frac{12}{2}x^2 + c$ $f(0) = 5, \text{ so c} = 5$ $f(x) = -x^3 + 6x^2 + 5$ Max and min are when $f'(x) = 0$ $-3x^2 + 12x = 0$ $-3x(x - 4) = 0$ so when $x = 0$ or $x = 4$ $x = 4, f(4) = 37$ so local max is 37.	f(x) found. OR f'(x) = 0 and $x = 4$ found.	Local maximum found.	
(d)	$f'(x) = 2x^2 + 9x - 5$ increasing when $2x^2 + 9x - 5 > 0$ (2x - 1)(x + 5) > 0 x < -5 or $x > 0.5$	Derivative found and made more than 0 or equated to 0.	-5 and 0.5 found.	Restrictions on <i>x</i> found.

(e)	Area = $80 - 2 \times 0.5x(10 - x) - 2 \times 0.5x(8 - x)$ $= 80 - 18x + 2x^{2}$	Area expression (mei) consistently differentiated.	x-value of minimum found.	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4x - 18$			
	For min area,			
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 0$			Minimum area
	so $x = 4$.5 for min area.			found and nature of
	Possible justifications:A(x) is a parabola facing up, which only has a minimum.			this turning point justified correctly using a valid method.
	• $A'(4) = -2$, $A'(5) = 2$, so it is a minimum.			method.
	• A''(x) = 4 > 0, so it is a minimum.			
	Then area of parallelogram is 39.5 cm ² .			
	Be aware of possible RAWW if area of only 2 triangles is used.			

Q	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	F100	Straight line with negative slope passing through x -axis at correct matching point ($x = -1$ if scales were integers).		
(b)	$\frac{dh}{dt} = 39.2 - 9.8t$ Max height when $\frac{dh}{dt} = 0$ So $t = 4$ and max height = 78.4 m.	Derivative found AND made equal to 0.	Time for max found, and max height found.	
(c)	$v(t) = 6t - 6t^{2} + c$ $v(2) = 20, \text{ so } c = 32$ $v(t) = 6t - 6t^{2} + 32$ $s(t) = 3t^{2} - 2t^{3} + 32t + k$ $t = 0, k = 0$ $v(t) = 20 \text{ m s}^{-1}$ $t = 2 \text{ and } s = 60 \text{ m}$	Velocity equation found.	Distance equation found. Evidence of $t = 0$ means $k = 0$.	Distance in context when velocity is 20 m s ⁻¹ found
(d)	F(0)	Graph is a positive cubic and goes through (0,3).	Graph is a positive cubic and goes through $(0,3)$ and turning points match up with roots of $f'(x)$.	
(e)	$\frac{dy}{dx} = 3x^2 - 12x + k$ $\frac{dy}{dx} = 0 \text{ when } x = 3.$ so $k = 9$ $y = x^3 - 6x^2 + 9x - 5$ Turning points are when $\frac{dy}{dx} = 0$ $3(x - 1)(x - 3) = 0$ so when $x = 1$ or $x = 3$ $x = 1, y = -1$ and when $x = 3, y = -5$ so using the y values, $(1, -1)$ is a maximum and $(3, -5)$ is a minimum. (OR using the graph of the function as positive cubic the max occurs to the left of a local minimum.)	Derivative found and set equal to 0.	Value for k found and x values of turning points found.	Problem solved finding the local max and min values with justification. (Accept any method.)

Q	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$y = -x^{5} + 6x + c$ when $x = 1$, $y = 7$ so $c = 2$ $y = -x^{5} + 6x + 2$	Function found by anti-differentiating. $c = 2$ accepted. $f(x)$ not required.		
(b)	$\frac{dN}{dt} = 400 + 200t$ $\frac{dN}{dt} = 14 400$ $400 + 200t = 14 400$ $t = 70 \text{ days}$	Rate of change of number of traders found, equated to 14 400 and time found.		
(c)	$R(p) = 1160p - 80p^2$ $R'(p) = 1160 - 160p$ Max revenue when $R'(p) = 0$ $1160 = 160p$ $p = 7.25$ so price of ticket is \$7.25 to maximise revenue at \$4205.	Finds R'(p) and equates to 0.	Correct maximum revenue found.	

(d)	Method One (-6,64) on graph means $-\frac{1}{3}(6)^3 + -6k + 4 = 64$ so $k = 2$ $\frac{dy}{dx} = -3 \cdot \frac{1}{3}x^2 + 2$ $-x^2 + 2 = -7$ $x^2 = 9$ $x = 3 \text{ or } -3$ $x = 3, y = 1$ Tangent at $(3,1)$ is $y = -7x + 22$ and $(-6,64)$ is also on this line, so this is the correct point where tangent touches the graph. If $x = -3$, $y = 7$, then tangent at $(-3,7)$ is $y = -7x - 14$ but $(-6,64)$ is not on this line.	Finds derivative and sets equal to -7 getting a quadratic OR Finds equation of line through (-6,64) with gradient of -7. And differentiates cubic.	Value of k found. AND Derivative found. AND Set equal to -7.	T1: Correct point of (3,1) found. T2: Validity of (3,1) clearly and correctly justified.
	Method Two Line through (-6,64) with gradient -7 is $y = -7x + 22$ (-6,64) on graph meaning $-\frac{1}{3}(6)^3 + -6k + 4 = 64$ so $k = 2$ $y = -7x + 22$ and $y = -\frac{1}{3}x^3 + 2x + 4$ intersect at (-6,64) and (3,1). need to check gradient at $x = 3$. Derivative of given function is $f'(x) = -3 \cdot \frac{1}{3}x^2 + k$ $f'(3) = -9 + 2$ = -7 as required so (3,1) is where tangent touches the graph.		OR Line with gradient -7 through (-6,64) found. AND k found. AND Derivative found.	

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 7	8 – 14	15 – 19	20 – 24