Assessment Schedule - 2017

Mathematics and Statistics:

Apply probability methods in solving problems (91267)

Evidence Statement

Q1	Expected	d Coverage	,		Achievement(u)	Merit(r)	Excellence(t)
(a)(i)	$p = \frac{222}{507} =$	= 0.4379			Proportion correct.		
(ii)			028 × 585000		Expected number correct.		
(iii)	Risk of female obesity = $\frac{285}{1295}$ = 0.220 Risk of male obesity = $\frac{222}{1205}$ = 0.184 Relative risk = $\frac{0.220}{0.184}$ = 1.1946 As this is not over 20% more, the article is not correct.			One risk correct.	Relative risk correct.	T1: Comparison with 20% but conclusion ignores strict inequality or rounds excessively T2: Comparison with 20% and correct conclusion based on strict inequality	
(b)(i)	$\frac{\text{Male}}{\text{Female}}$ $\frac{235}{507} = 0$	Smoker 53 50 103 0.4635	Non-smoker 169 235 404	Total 222 285 507	Number of female non-smokers found (235).	Proportion correct.	
(ii)	Risk of n	on-smoker	$e = \frac{103}{420} = 0.2$ $obese = \frac{404}{2080}$ ace there is a graker.	= 0.194	One risk correct.	Clear conclusion using correct risks.	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No relevant evidence.	A valid attempt at one question.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of T1	1 of T2

Q2	Expected Coverage	Achievement(u)	Merit(r)	Excellence(t)
(a)(i)	$P = 0.65 \times 0.86 = 0.559$	Probability correct.		
(ii)	$P = 0.35 \times 0.4 = 0.14$ Accept $P = 0.35 \times \frac{4}{15} = 0.0933$	Probability correct.		
(iii)	Consider 1000 ewes that lamb. Nr of lambs from single birth that survive =1000 × 0.65 × 0.86 = 559 Nr of lambs from twin births Where both survive = 1000 × 0.35 × 0.4 × 2 = 280** Where one survives = 1000 × 0.35 × 0.4 × 1 = 140 P(lamb from single surviving lamb) = $\frac{0.559}{559 + 420} = \frac{559}{979} = 0.571$	Correct numerator of 559 or 0.559 used in a fraction		$ \frac{559}{559 + 700x + y} $ $ x = y = 0.4 $ $ p = 0.571 $ $ x = \frac{4}{15}, y = \frac{8}{15} $ $ p = 0.599 $ Accept $ \frac{559}{839} = 0.6663 $
(iv)	Consider 1000 ewes: Nr producing 1 live lamb = $1000 \times (0.85 \times 0.65 \times 0.86 + 0.85 \times 0.35 \times 0.4)$ = $1000 \times (0.475 + 0.119) = 594$ lambs Nr producing 2 live lambs = $1000 \times (0.85 \times 0.35 \times 0.4) = 119$ $\rightarrow 119 \times 2 = 238$ lambs** Lambing percentage = $\frac{594 + 238}{1000} = 83.2\%$ (accept decimal)	0.85 used correctly, such as 0.85 × 0.65 × 0.86 =0.4752	Consistent answer not accounting for 2 twin lambs, giving 71.3%	Solution correct: 85(0.559 + 0.7x + 0.35y) x = y = 0.4: p = 83.2% $x = \frac{4}{15}, y = \frac{8}{15}$ p = 79.3%
(b)	$p = \frac{3}{5} \times 0.06 \times 0.88 = 0.032$	0.06×0.88 correct.	Probability correct.	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No relevant evidence.	A valid attempt at one question.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

Q3	Expected Coverage	Achievement(u)	Merit(r)	Excellence(t)
(a)(i)	P(0 < Z < 1.154) = 0.3757	Probability correct.		
(ii)	$P(Z < z) = 0.1 \implies z = -1.28 \text{ to } -1.282$ $\frac{x - 4125}{65} = -1.28 \text{ to } -1.282$ $x = 4125 - 1.281 \times 65$ $= 4041.67, 4041.735 \text{ or } 4041.8 \text{ g}$ $= 4042 \text{ g (4sf)}$	z = -1.284 (-1.28) correct.	Correct answer. Accept CAO.	
(iii)	Tables: $P(0 < Z < z) = 0.1 \implies z = 0.253(3471)$ $\frac{4000 - 3975}{\sigma} = 0.253(3471) * \sigma$ $\sigma = \frac{4000 - 3975}{0.253} = 98.814 (98.6816) (3dp) g$	z = 0.253 correct	Expression (*) set up OR Consistent solution based on incorrect z	Correct answer with working.
	OR	OR	OR	OR
	Record of "guess and check" giving $\sigma = 98.67885$	σ=99	Working and $\sigma = 98.7$	Working and $\sigma = 98.68$
(iv)	P(Weight > 4025) = P(Z > -0.2976) = 0.617 P(Both > 4025) = $(0.617)^2 = 0.381$	p = 0.617 correct OR consistent p^2	Probability correct.	
(b)(i)	$p = \frac{35}{50} = 0.7$	Proportion correct.		
(ii)	Comparison of the distributions given below for the normal (expected) distribution vs sample distribution, resp. Numerical justification given in []. Possible valid comments about differences: Shape: 1. Symmetrical vs not symmetrical 2. Averages all same vs not all same [4050 vs various] 3. Unimodal vs bimodal [4050/both "3950" and "4050"] Centre: 4. Medians [4050 vs over 4050] (do not accept modes) Spread: 5. Range [550 vs 350], or estimates of SD or IQR (with reasoning) Possible valid comments about similarities: Centre: 6. Means [both 4050] Probability: 7. P(w > 4000) [0.724 vs 0.7]	Two valid comparative comments about different aspects of shape, centre and spread.	Three valid comparative comments about different aspects of shape, centre and spread with numerical justification for at least two comments.	Four valid comparative comments about different aspects of shape, centre and spread with numerical justification for at least three comments.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No relevant evidence.	A valid attempt at one question.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 7	8 – 13	14 – 19	20 – 24