Assessment Schedule - 2019

Mathematics and Statistics: Apply probability methods in solving problems (91267)

Evidence

ONE	Expecte	ed Coverage		A	chievement (u)		Mer	rit (r)	Ex	cellence (t)
(a)(i)	$\frac{30}{971}$ = 0.0309 or eq	uivalent.		Corre	ct probability.					
(a)(ii)	$\frac{143}{971} = 0.1473$ or equ	iivalent.		Corre	ct probability.					
(b)	The relative risk that has a bag which is h $\frac{141}{558} \text{ over } \frac{98}{413} = 1$	eavy =	sample	One r	isk correctly lated.		Correct rrisk OR	elative	recij relat expl	Correct or procal cive risk and anation
	Accept as MEI: $\frac{208}{558}$ over $\frac{144}{413} = 1$.0691					valid qual on the cla made.		recip relate expl ANI	Correct or procal cive risk and anation Dear comment
	Explanation: This means that femlikely to have a heav		ore						qual	e which ifies the n's validity.
	Qualification: This RR is only very means that the differ be statistically significant.	rence may not act	tually e).							
(c)(i)	NB: Reciprocal RR for male/female is 0.94. The distributions in figure 1 are not symmetrical whereas a normal distribution is symmetrical and bell-shaped .			Descr	ribes the lack of netry.		Describes the lack of symmetry and clearly describes the shape of a normal distribution.			
(c)(ii)	need some negated symmetrical distribution impossible. (2) while most people weights, some if more gear than people, those withis will cause at this will cause at [any valid reason.]	buted as a norma: around 4 kg, you ative weights to not stribution, which ple have average individuals carry others [e.g. Sportith lots of books a tail to the right be lighter than 4k ben], which will call to the active and of the active and of the active and active and active and active and active and active active and active a	would nake a is bag a lot ts] so				of symme ONE reas to support statement OR	on given t the	sym TW give	nr sideration of metry with O reasons n to support statement.
N1	N2	A3	A4	1	M5		M6	E7		E8
A valid atte		2 of u	3 of u		1 of r	2 of	r	T1 OR T		T2 OR (T1 and T)

TWO	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	P(415 < x < 520) = $P(-1 < z < 2)$ = 0.8186	Correct probability.		
(a) (ii)	P(x < 400) = P(z < -1.4286) = 0.0766	Correct probability.		
(b)	P(x < k) = 0.15, k = 413.7 g P(x > m) = 0.10, m = 494.9 g Acceptable range is 413.7 to 494.9 g	One of the end points of the range correct or CAO.	Correct range given.	
(c)(i)	She is less consistent (the weights of her plates have more variety) than the company as a whole.	Unclear or contradictory comments with some validity.	Correct interpretation.	
(c)(ii)	P(z > k) > 0.75 so k < -0.6745 Hence, $sd < \frac{-50}{-0.6745} = 74.12 g \text{ (4sf)}$	Correct z-value found (± 0.6745) Or CAO	Correct sd found but not expressed as a correct inequality	Correct range obtained
	Her sd > 35, So the range of possible values is 35 < sd < 74.12 Trial and improvement methods also acceptable with a record of consecutive trials.		OR record of estimations leading to sd accurate to 2sf.	OR record of estimations leading to range accurate to 2sf.
(d)(i)	$P(x > 520) = 0.02275$ P(2 plates over 520 g) $= 0.02275^{2}$ $= 0.0005176 \sim 0.05\%$	P(x > 520) correct or CAO.	Correct probability.	
(d)(ii)	The probability from d(i) is very small, suggesting that Eddy's plates might have: (1) a higher mean than usual, since if the mean was the same the chance of 2 over 520 g is very low (2) a significantly increased variation in the weights of plates that he makes but the same mean (3) both a higher mean and increased variation (4) a distribution that may not even be normal, in which case it will be difficult to find probabilities (5) other valid reasoning.		One of the reasons is clearly stated.	Student cites low value of P(2 plates > 520 g) AND one of the reasons is clearly stated.

N1	N2	A3	A4	M5	M6	E7	E8
A valid attempt at one question.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

 $\mathbf{N0} =$ No response; no relevant evidence.

THREE	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	36%	Correct probability.		
(ii)	48%	Correct probability.		
(iii)	(1) If you play 100 times, you would expect to win \$2 ~ 36 times, win \$1 ~ 48 times, giving you total winnings of \$120 (or consistent with 24% in (ii), i.e. \$96).	ONE of points (1) to (4).	TWO of points (1) to (4).	
	(2) But it would have cost you \$50 to play 100 games, so you would profit by about \$60 (using the \$110).			
	(3) Ju-Eun cannot say that Kim will profit by exactly any amount as there is always random variation in games of chance so if you repeated the 100 games many times you would get a variety of profit figures.			
	(4) The experimental probability would usually differ from the theoretical probability in any game of chance, so if Ju-Eun makes a claim like this based on calculations she may not be correct in practice.			
	(5) Other valid reasoning.			
(b)	Probability tree implies that $P(\text{win a prize}) = p(WW) + p(WLW) + p(WLW) + p(LWW) + p(LWW)$	One correct, identifiable probability calculated for at least 3 games or CAO.	At least 4 out of the 6 probabilities correctly calculated and summed.	all 6 probabilities correctly calculated and summed.
	= 0.8208			
(c)	Let $x = p(wins first game)$ Since $p(wins 2 games)$ = 1 - 0.75 = 0.25, $2x^2 = 0.25$ x = 0.3536 So $p(loses both games)$ $= (1 - 0.3536)(1 - \frac{0.3536}{2})$	Probability tree set up correctly with x , $2x$ and $\frac{x}{2}$ or CAO.	Obtains p(win first game) = 0.3536.	Correct probability obtained and clearly stated.
	= 0.5321			

N1	N2	A3	A4	M5	M6	E7	E8
A valid attempt at one question.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

 $\mathbf{N}\mathbf{0} =$ No response; no relevant evidence.

Cut scores

Not Achieved Achievement		Achievement with Merit	Achievement with Excellence	
0-7 8-13		14 – 19	20 – 24	