Assessment Schedule – 2015 Physics: Demonstrate understanding of electrical systems (91526)

Evidence

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
ONE (a)	$\omega = 2\pi f$ $\omega = 2\pi \times 50 = 314$	• $\omega = 314 \text{ s}^{-1}$		
(b)	$X_{L} = \omega L = 2\pi f L$ $X_{L} = 2\pi \times 50 \times 0.150 = 47.1 \Omega$	Correct workings shown. (SHOW THAT Q)		
(c)	$V_{\rm L} = IX_{\rm L} = 0.656 \times 47.1 = 30.9 \text{ V}$ $V_{\rm R} = IR = 0.656 \times 10.0 = 6.56 \text{ V}$	 Calculates values for V_L and V_R. OR Draws phasors to represent V_C and V_L and V_R with correct phase shift. 	• Calculates values for V_L and V_R . AND Draws phasors to represent V_C and V_L and V_R with correct phase shift.	 Calculates values for V_L and V_R. AND Draws phasors to represent V_C and V_L and V_R with correct phase shift and correct sizes.
	In an AC circuit, V_L and V_C are 180° out of phase. V_L V_C At resonance, $X_L = X_C$ so $X_L - X_C = 0$ $Z = R$ so $I = \frac{V}{R} = \frac{12}{10} = 1.20$ A	 V_L and V_C are 180° out of phase. X_L = X_C V_L = V_C I = 1.20 A (no explanation) 	 The impedance of the inductor and the capacitor cancel out, due to the opposite phase of the capacitor and the inductor therefore Z = R. OR X_L = X_C, Z = R OR Excellence answer but no explanation that Z is minimum 	Explains why the impedance of the circuit is a minimum ie it equals the resistance of the circuit at resonance, describing the equal reactance but opposite phase of the inductance and the capacitance so $I = \frac{V}{R} = \frac{12}{10} = 1.20 \text{ A}$

NCEA Level 3 Physics (91526) 2015 — page 2 of 6

Not Achieved			Achievement		Achievement with Merit Achievement with Exce		Excellence	
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A	2 A	3 A 1 M	4 A 1 M & 1 A	1 M & 2 A 1 E	2 M 1 E & 3 A	E & M	2 E

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
TWO (a)	Calculate voltage across cell $9.00 - 6.40 = 2.60 \text{ V}$ Uses this to show that $\frac{2.60}{0.208} = 12.5 \Omega$ OR $r = R_T - R_C$	• $V_{\rm r} = 2.60 \text{ V}$ • $r = R_{\rm T} - R_{\rm C}$	• r = 12.5 Ω (Must clearly indicate how 2.6 is derived) (SHOW THAT Q)	
(b)	$C = \frac{\varepsilon_0 \varepsilon_R A}{d}$ $A = \frac{Cd}{\varepsilon_0 \varepsilon_R}$ $A = \frac{2.75 \times 10^{-9} \times 2.26 \times 10^{-4}}{8.85 \times 10^{-12} \times 1}$ $A = 7.02 \times 10^{-2} \text{ m}^2$	• $A = 7.02 \times 10^{-2} \text{ m}^2$		
(c)	Capacitor voltage $ \frac{\widehat{S}_{00}}{\widehat{S}_{00}} \underbrace{\frac{6.00}{3.00}}_{5.00} \underbrace{\frac{2.00}{3.00}}_{5.00} \underbrace{\frac{2.00}{3.00}}_{2.00} \underbrace{\frac{2.50}{3.00}}_{5.00} $ 63% change interpolated on graph as 65 – 75 by either method. $ \tau = RC \text{ so } R = \frac{\tau}{C} = \frac{68}{15} = 4.50 \Omega $ $ I = \frac{V}{R} = \frac{5.00}{4.50} = 1.11 \text{ A} $	 Correct method used to estimate time constant. Shows some understanding of a decrease in V leading to extrapolating Time constant. Correct method used leading to incorrect I (used 33/37 or 63/67%) 	Correct method used to estimate time constant. AND Time constant used to calculate <i>R</i> . (SHOW THAT Q)	• Correct method used to estimate time constant. AND Time constant used to calculate <i>R</i> . AND Initial current calculated from τ and <i>R</i> .

This is about 1% of the 6×10^5 J of energy required.

$$\tau = RC = 4.5 \times 400 = 1800 \text{ s}$$

The time to fully discharge, 5 time constants is 9000 s.

The capacitor will take a long time (2.5 hours) to discharge and does not rapidly discharge.

•
$$E = \frac{1}{2}CV^2 = \frac{1}{2} \times 400 \times 5^2$$

= 5000 J

- $\tau = RC = 4.5 \times 400 = 1800 \text{ s}$
- Discharge will occur in 4 5 time constants.

No it won't charge because:

• $E = \frac{1}{2}CV^2 = \frac{1}{2} \times 400 \times 5^2 = 5000 \text{ J}$. This is less than the energy required.

OR

• $\tau = RC = 4.5 \times 400 = 1800 \text{ s}$ The capacitor will take about 9000 s to discharge (5 time constants is 9000 s). This is too long. No it won't charge because:

• $E = 6 \times 10^5$, Q = 2.6×10^5 , so C = 4800 F, this is much larger than 400 F

AND

$$\tau = RC = 4.5 \times 400 = 1800 \text{ s}$$

The capacitor will take about 9000 s to discharge (5 time constants is 9000 s or reference to fact that its 63% discharged). This is too long.

OR

• $E = \frac{1}{2}CV^2 = \frac{1}{2} \times 400 \times 5^2$ = 5000 J. This is less than the energy required.

AND

$$\tau = RC = 4.5 \times 400 = 1800 \text{ s}$$

The capacitor will take about 9000 s to discharge (5 time constants is 9000 s or reference to fact that its 63% discharged). This is too long.

Not Achieved			Achievement		Achievement with Merit Achievement with E		Excellence	
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A	2 A 1 M	3 A 1 M & 1 A	4 A 1 M & 2 A 2 M	2 M & 1A 1 E	3 M 1 E & 3 A	E & M	2 E

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
THREE (a)	Inductors store energy as magnetic fields.	Magnetic fields.		
(b)	$V_{R} = IR = 0.26 \times 12.5 = 3.25 V$ $V_{L} = V_{S} - V_{R} = 9.00 - 3.25 = 5.75 V$ $V_{L} = -L \frac{dI}{dt}$ $So \frac{dI}{dt} = \frac{V_{L}}{L} = \frac{5.75}{10 \times 10^{-3}} = 575 \text{ A s}^{-1}$	• $V_{\rm R}$ calculated. AND $V_{\rm L}$ calculated.	• $V_{\rm R}$ calculated. $V_{\rm L}$ calculated. $\frac{{ m d}I}{{ m d}t}$ calculated.	
(c)	When the switch is closed, the change in current, $\frac{\mathrm{d}I}{\mathrm{d}t}$, is very great so the reactive inductor opposes the change in current (producing a back emf), so most of the current goes through the bulb (as these two components are in parallel). As $\frac{\mathrm{d}I}{\mathrm{d}t}$ becomes smaller, the opposition of the inductor (its effective resistance) becomes smaller so more current flows through the inductor and less through the bulb.	 Explains why initially little current flows through the inductor. Inductor produces a back emf / induced voltage Less current in bulb, less Power 	Explains why initially little current flows through the inductor AND Explains why finally most of the current flows through the inductor and not the resistor.	Explains why there is a change in I AND Less current in bulb, less Power

(d) A changing (alternating) current inducing a changing (fluctuating) magnetic field around the coil of wire.

The size of the field is determined by the frequency of the alternating current.

Changing / fluctuating magnetic fields cause currents to flow in the bicycle wheels.

By Lenz's law, a current creates a magnetic field that opposes the magnetic field that created it – the higher the frequency, the greater the eddy currents. The induced magnetic field always opposes or reduces the field that created it.

- Alternating currents have fluctuating magnetic fields/flux.
- Changing flux will induce a voltage
- Opposite direction due to Lenz's Law.
- High frequency results in large induced voltage / (rate of) change in current.

• Changing flux results in an induced voltage / current / field (Faraday's Law).

AND

It will be large because rate of flux change is large due to high frequency.

OR

 Changing flux results in an induced voltage / current / field (Faraday's Law).

AND

It is in opposite direction to oppose change/ the current (Lenz's Law).

Changing flux results in an induced voltage / current / field (Faraday's Law).

AND

It will be large because rate of flux change is large due to high frequency.

AND

It is in opposite direction to oppose change / the current (Lenz's Law).

Not Achieved			Achievement		Achievement with Merit Achievement with Exc		Excellence	
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	A	2 A 1 M	3 A 1 M & 1 A	4 A 1 M & 2 A 2M	2 M & 1 A 1 E	3 M 1 E & 3 A	E & M	2 E

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 6	7 – 14	15 – 18	19 – 24