Assessment Schedule – 2020 ## Physics: Demonstrate understanding of electrical systems (91526) ## **Evidence Statement** | Q | Evidence | Achievement | Merit | Excellence | |---------|---|--|--|-------------------------------| | ONE (a) | $V_{\text{peak}} = \sqrt{2} \times 65.0 = 91.9 \text{ V}$ | • Vector diagram labelled correctly.
• $Z = 183 \Omega$ | • Correct vector diagram. AND $Z = 183 \Omega$ | | | (b) | $Z = \frac{150}{\cos 35^{\circ}} = 183 \Omega$ | • Vector diagram labelled correctly. • $Z = 183 \Omega$ | • Correct vector diagram AND $Z = 183 \Omega$ | | | (c) | $X_{\rm T} = 150 \tan 35 = 105 \Omega$ $X_{\rm L} = 2\pi f L = 119.4 \Omega$ $X_{\rm c} = 119.4 - 105 = 14.4 \Omega$ $C = \frac{1}{2\pi f X_{\rm c}} = \frac{1}{2\pi \times 50 \times 14.4}$ $= 2.21 \times 10^{-4} {\rm F}$ | • $X = 105 \Omega$
• $X_L = 119 \Omega$
• $C = 2.67 \times 10^{-5}$ | • $X_{\rm C} = 14.4 \Omega$
• Correct C using incorrect $X_{\rm C}$
• $C = 1.42 \times 10^{-5}$ | • $C = 2.21 \times 10^{-4} F$ | | (d) | At resonance, $X_c = X_L$
Since in the above circuit, the reactance of the inductor is greater
than the reactance of the capacitor, the frequency of the supply will
have to be reduced so as to reduce inductor reactance and increase
capacitor reactance.
This is because the reactance of the capacitor is inversely
proportional to frequency, whereas the reactance of the inductor is
directly proportional to frequency. | • At resonance $X_L = X_C$
f must decrease
X_L decreases
X_C increases. | f must decrease because X_L > X_C and for resonance X_L = X_C f decreases, X_L decreases, X_C increases f₀ = 17.4 Hz, f must decrease Correct explanation or calculation for incorrect answer from 1c (i.e. consequential error). | | | Q | Evidence | Achievement | Merit | Excellence | |---------|---|--|---|---| | TWO (a) | Voltage across resistor = 0 V
Voltage across inductor = 12.0 V | • $V_R = 0 \text{ V AND } L = 12 \text{ V}$ | | | | (b) | With the inductor in the circuit, there is a changing current at switch on. This causes a back emf across the inductor that opposes the changing current and it slows its increase to its max value. | • ΔI • ΔB • $\Delta \Phi$ • Induced V | ΔI results in opposing induced V (If induced I mentioned, NO m grade.) | | | (c) | $I_{\text{max}} = \frac{12}{22} = 0.545 \text{ A}$ After 1 time constant: $I = 0.55(1 - e^{-1}) = 0.345 \text{ A}$ OR $0.63 \times 0.545 = 0.345 \text{ A}$ | I = 0.55 A 0.63 × incorrect I Other correct method τ = 0.23 s | • I = 0.345 A | | | (d) | When the switch is closed, the voltage across the spark plug will only be 12 V, which is equal to the battery voltage. When the switch is open, there is an air gap, and the current falls rapidly, so there is a high rate of change of flux, which induces a very high voltage. Also the time constant is very short, since the value of resistance is very high. Kirchhoff's law is no longer obeyed, since it is no longer a closed circuit. | When switch closed max V = 12 V ΔI/t is large. I decreases quickly. ΔΦ/t is large. Small τ. Large R. Open circuit, no Kirchhoff's law. | ΔI/t is large. I decreases quickly. ΔΦ/t is large AND Small τ because R is large. OR Reference to Kirchhoff's law (ie not restricted to 12 V.) (explain why I drops quickly) | • $\frac{\Delta I}{t}$ is large • I decreases quickly • $\frac{\Delta \Phi}{t}$ is large AND • Small τ because R is large. AND • Reference to Kirchhoff's law. | | Q | Evidence | Achievement | Merit | Excellence | |--------------|---|--|--|------------| | THREE
(a) | charging or discharging time Maximum current is determined by the battery voltage and the resistance of the resistor. | Correct graph.Battery voltage.Resistance. | Correct graph. AND Voltage and Resistance. | | | (b) | Energy stored in the capacitor = $\frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\times 1.20\times 10^{-6}\times 3.0^2 = 5.40\times 10^{-4} \text{ J}$
Energy supplied by the cell = $QV = CV^2 = 1.20\times 10^{-4}\times 3.0^2 = 1.08\times 10^{-3} \text{ J}$
When current flows through the wires, electrical energy is converted to heat energy in the wires. So, only half the energy is stored in the capacitor. | E_{cap} = 5.4 × 10⁻⁴ J E_{cell} = 1.08 × 10⁻³ J E_{cap} = ½ E_{cell} E_{cap} < E_{cell} Difference due to heat energy | • $E_{\text{cap}} = 5.4 \times 10^{-4} \text{ J}$ AND • Ecell = $1.08 \times 10^{-3} \text{ J}$ • $E_{\text{cap}} = \frac{1}{2} E_{\text{cell}}$ • $E_{\text{cap}} < E_{\text{cell}}$ AND • $\Delta E = 1.08 \times 10^{-3} \text{ J}$ OR Due to heat energy. OR • Resistance. | | | (c) | $A = \frac{Cd}{\varepsilon_r \varepsilon_0} = \frac{120 \times 10^{-6} \times 2 \times 10^{-3}}{8.85 \times 10^{-12} \times 10} = 2711.86 \text{ m}^2$ | • $A = 2711.9 \text{ m}^2$ | | | | (d) | Charge moves from higher potential to lower; will go from A to B. $Q_{\rm A} = C_{\rm A} V_{\rm A} = 1.20 \times 10^{-4} \times 50.0 = 6.00 \times 10^{-3} \text{ C}$ $Q_{\rm B} = C_{\rm B} V_{\rm B} = 1.00 \times 10^{-4} \times 40.0 = 4.00 \times 10^{-3} \text{ C}$ $\text{common voltage} = \frac{\text{total charge}}{\text{total capacitance}}$ $V = \frac{10.0 \times 10^{-3}}{2.20 \times 10^{-4}} = 45.45 \text{ V}$ New charge on A = 1.20 × 10 ⁻⁴ × 45.45 = 5.45 × 10 ⁻³ C | A to B Left to right High to low 50 to 40 I – clockwise Q – anticlockwise Q_A = 6 × 10⁻³ C Q_B = 4 × 10⁻³ C C_T = 2.2 × 10⁻⁴ F | • $Q_T = 1 \times 10^{-2} \text{ F}$
AND
$C_T = 2.2 \times 10^{-4} \text{ F}$
AND
$V = 45.45 \text{ x} \times 10^{-3} \text{ V}$
OR
$Q_A = 5.45 \text{ x} \times 10^{-3} \text{ C}$
SHOW THAT Q | $Q_{T} = 1 \times 10^{-2} \text{ F}$ AND $C_{T} = 2.2 \times 10^{-4} \text{ F}$ AND $V = 45.4 \times 10^{-3} \text{ V}$ AND $Q_{A} = 5.45 \times 10^{-3} \text{ C}$ Direction not needed | |-----|--|---|--|--| | | | • $Q_A = 5.45 \times 10^{-3} \mathrm{C}$ | Direction not needed | | | NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 | |--|----|----|---------------|---------------|--------------------|-------------------------|------------------------|--------------| | No response;
no relevant
evidence. | 1a | 2a | 3a
1a + 1m | 4a
2a + 1m | 1a + 2m
3a + 1m | 2a + 2m
1a + 1m + 1e | 2m + 1e $2a + 1m + 1e$ | 1a + 2m + 1e | $$a=1$$ $m=2$ $e=3$ ## **Cut Scores** | Not Achieved | Achievement | Achievement with Merit | Achievement with Excellence | | |--------------|-------------|------------------------|-----------------------------|--| | 0 – 6 | 7– 13 | 14 – 18 | 19 – 24 | |