Assessment Schedule – 2013

Calculus: Apply the algebra of complex numbers in solving problems (91577)

Assessment Criteria

Achievement	Merit	Excellence
Apply the algebra of complex numbers in solving problems must involve:	Apply the algebra of complex numbers, using relational thinking, in solving problems must involve one or more of:	Apply the algebra of complex numbers, using extended abstract thinking, in solving problems must involve one or more of:
 using a range of appropriate algebraic methods demonstrating knowledge of concepts and terms and communicating using appropriate representations. 	 carrying out a logical sequence of steps connecting different concepts and representations demonstrating understanding of concepts 	 devising a strategy to investigate or solve problem identifying relevant concepts in context developing a chain of logical reasoning, or proof
	 forming and using a model and relating findings to a context, or communicating thinking using appropriate mathematical statements. 	 forming a generalisation and using correct mathematical statements, or communicating mathematical insight.

Evidence Statement

One	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$-8 - 4\sqrt{5}$	Or equivalent.		
(b)	-4+4i clearly marked on Argand diagram.	Must plot point.		
(c)	$z_{1} = 2 - 3i \implies z_{2} = 2 + 3i$ (z - 2 - 3i)(z - 2 + 3i) $= z^{2} - 4z + 13$ $(z^{2} - 4z + 13)(z + k) = z^{3} - 4z^{2} + 13z + kz^{2} - 4kz + 13k$ $= z^{3} + (k - 4)z^{2} + (13 - 4k)z + 13k$ = 0 $\implies k = 4$ $\therefore p = 52, \text{ roots } 2 + 3i, 2 - 3i, -4$	Either one other root found or p = 52	Both other roots and <i>p</i> found. CRO	
(d)	$w = \frac{1}{1+i} + i$ $= \frac{(1-i)}{(1+i)(1-i)} + i$ $= \frac{(1-i)}{2} + i$ $= \frac{1+i}{2}$ $= \frac{1+i}{2} + \frac{1}{2}i$ Arg (w) = $\frac{\pi}{4}$ or 45°	Simplified expression for w or Arg (w) = 0.785	Exact value of argument found. CRO.	

One	Expected C	overage	Achievement (u)	Merit (r)	Excellence (t)
(e)	uv = (6+ki)(4+ki) = 24+10ki - k ² Arg = $\frac{\pi}{4}$ \implies Re(uv) = Im(uv) 24-k ² = 10k k ² +10k-24 = 0 (k+12)(k-2) = 0 k = -12 or 2 k = -12 \implies uv = -120 - 120i \therefore Arg = $\frac{-3\pi}{4} \neq \frac{\pi}{4}$ \therefore k k = 2 \implies uv = 20 + 20i \therefore Arg = $\frac{\pi}{4}$		Expanded expression for <i>uv</i> . <i>CRO</i>	Two correct solutions for <i>k</i> from quadratic equation.	Correct answer $(k = 2)$ with a logical chain of reasoning.
	$\therefore k = 2$				
$N \emptyset = 1$	$\mathbf{N}\mathbf{\emptyset} = $ No relevant evidence $\mathbf{A3} = 2$ u		M5 = 1 r	E7 = 1 t with 1 minor error	
N1 = 1	partial solution	A4 = 3 u	M6 = 2 r	E8 = 1 t	
N2 = 1 u					

Two	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	-7	Remainder found.		
(b)	$\frac{1}{3}$ cis $\left(\frac{\pi}{6}\right)$	Or equivalent.		
(c)	$\alpha + \beta = -9$ $3\alpha + 3\beta = -27$ $\alpha\beta = -12$ $3\alpha \cdot 3\beta = 9\alpha\beta = -108$ $x^{2} + 27x - 108 = 0$	Two correct terms out of x^2 , 27x or -108.	A correct equation.	
(d)	$au^{2} + bu + c = 0$ $a(x + iy)^{2} + b(x + iy) + c = 0$ $ax^{2} + 2axyi - ay^{2} + bx + byi + c = 0$ (3) $ax^{2} - ay^{2} + bx + c + (2axy + by)i = 0$ so $ax^{2} - ay^{2} + bx + c = 0$ and $2axy + by = 0$ $a\overline{u}^{2} + b\overline{u} + c$ $= a(x - iy)^{2} + b(x - iy) + c$ $= ax^{2} - 2axyi - ay^{2} + bx - byi + c$ (8) $= ax^{2} - ay^{2} + bx + c - (2axy + by)i$ = 0 - 0 = 0 as required	Expanded expression for equation in terms of x and y (ie 3rd line).	Proof correct with logical mathematical statements.	
(e)	$\frac{z+2i}{z-2i} = \frac{x+iy+2i}{x+iy-2i}$ = $\frac{(x+(y+2)i)}{(x+(y-2)i)} \cdot \frac{(x-(y-2)i)}{(x-(y-2)i)}$ = $\frac{x^2 - xyi + 2xi + xyi + 2xi + y^2 - 4}{x^2 + (y-2)^2}$ (3) = $\frac{x^2 + y^2 - 4 + 4xi}{x^2 + (y-2)^2}$ As purely imaginary, the real part equals zero. $x^2 + y^2 - 4 = 0$ or $x^2 + y^2 = 4$ Locus is a circle, radius 2, centred at (0,0). [excludes the point (0,2)]	CRO	Expanded expression with correct numerator or denominator. (ie 3rd line).	Correct answer with a logical chain of reasoning. Do not have to check when denominator equal to zero to find exclusion.
	No relevant evidence $A3 = 2 u$. partial solution $A4 = 3 u$	M5 = 1 r M6 = 2 r	E7 = 1 t with E8 = 1 t	1 minor error

Three	Expecte	d Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$-3\pm\sqrt{11}i$		Simplified solutions.		
(b)	p = 3 + 4i $\overline{q} = 2 + 3i$ $p\overline{q} = -6 + 17i$		Simplified solution.		
(c)	$\sqrt{x} - 3 = \sqrt{x - p}$ $x - 6\sqrt{x} + 9 = x - p$ $6\sqrt{x} = p + 9$ $36x = (p + 9)^{2}$ $x = \frac{(p + 9)^{2}}{36}$ or $x = \frac{p^{2} + 18p + 81}{36}$ or x	3) $= \frac{p^2}{36} + \frac{p}{2} + \frac{9}{4}$	Correct expression with x's eliminated (ie 3rd line).	Or equivalent.	
(d)	$z^{3} = -n$ $z^{3} = n \operatorname{cis} \pi$ $z_{1} = \sqrt[3]{n} \operatorname{cis} \left(\frac{\pi}{3}\right)$ $z_{2} = \sqrt[3]{n} \operatorname{cis} \pi$ $z_{3} = \sqrt[3]{n} \operatorname{cis} \left(\frac{5\pi}{3}\right) = \sqrt[3]{n} \operatorname{cis}$ Accept arguments in deci 1.047, 3.142, 5.236 or -1 Accept arguments in degr 60°, 180°, 300° or - 60°	mal radians: .047	ONE correct solution.	THREE correct solutions.	
(e)	$6+x = 4\sqrt{3x+k}$ $x^{2} + 12x + 36 = 16(3x+k)$ $x^{2} - 36x + 36 - 16k = 0$ No real roots means $b^{2} - (-36)^{2} - 4(36 - 16k) < 0$ 1296 - 144 + 64k < 0 64k < -1152 k < -18	(3)	CRO	Simplified quadratic expression (3rd line).	Correct answer with a logical chain of reasoning.
$\mathbf{N}\mathbf{\emptyset} = \mathbf{N}$	o relevant evidence	A3 = 2 u	M5 = 1 r	$\mathbf{E7} = 1$ t with	1 minor error
$N1 = 1 \mu$ $N2 = 1 \mu$	partial solution	$\mathbf{A4} = 3 \mathrm{u}$	M6 = 2 r	$\mathbf{E8} = 1 \text{ t}$	

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 7	8 – 12	13 – 18	19 – 24