Assessment Schedule – 2013

Calculus: Apply differentiation methods in solving problems (91578)

Evidence Statement

One	Expected Coverage	Achievement	Merit	Excellence
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2\left(x^2 + 1\right) \cdot 2x$	Correct derivative.		
(b)	$\frac{dy}{dx} = \frac{3 - e^x}{3x - e^x}$ or no tangent exists At $x = 0$ gradient = -2	Correct solution with correct derivative shown.		
(c)	$\frac{dy}{dx} = -2xe^{6-x^2}$ $\frac{d^2y}{dx^2} = -2e^{6-x^2} + 4x^2e^{6-x^2}$ Point of inflection when $\frac{d^2y}{dx^2} = 0$ $(4x^2 - 2)e^{6-x^2} = 0$ $4x^2 - 2 = 0$ $x = \pm \frac{1}{\sqrt{2}}$	Correct $\frac{dy}{dx}$	Correct solution with correct first and second derivatives. ± not required, accept positive answer only.	
(d)	$\frac{dx}{dt} = 5\cos t \qquad \frac{dy}{dt} = 3\sec^2 t = \frac{3}{\cos^2 t}$ $\frac{dy}{dx} = \frac{3}{5\cos^3 t}$ At $t = \frac{\pi}{3}, \ \frac{dy}{dx} = \frac{24}{5} (= 4.8)$ $\therefore \text{ gradient of normal} = \frac{-5}{24} (= -0.2083)$	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$.	Correct solution including all correct derivatives.	

(e)	$20 = 2\pi r^{2} + 2\pi rh$ $2\pi r(r+h) = 20$ $h = \frac{10}{\pi r} - r$ $V = \pi r^{2}h = \pi r^{2} \cdot \left(\frac{10}{\pi r} - r\right)$	Equation for volume in terms of 1 variable found, and differentiated correctly.	Problem solved including correct derivative.
	$V = 10r - \pi r^{3}$ $\frac{dV}{dr} = 10 - 3\pi r^{2}$ $\frac{dV}{dr} = 0 \implies r = \sqrt{\frac{10}{3\pi}} \text{ or } r = 1.03 \text{ m}$ $OP = 0 \implies r = \sqrt{2} - 2 - 1$		
	$OR 20 = \pi r^{2} + 2\pi rh$ $V = 10r - \frac{\pi r^{3}}{2}$ $\frac{dV}{dr} = 10 - \frac{3\pi r^{2}}{2}$ $r = \sqrt{\frac{20}{3\pi}} = 1.46$		

 $N\emptyset$ = No response / no relevant evidence N1 = ONE question demonstrating limited knowledge of differentiation techniques N2 = ONE correct derivative A3 = TWO of Achievement A4 = THREE of Achievement M5 = ONE of Merit M6 = TWO of Merit E7 = Excellence with minor errors ignored E8 = Excellence correct

Two	Expected Coverage	Achievement	Merit	Excellence
(a)	$\frac{dy}{dx} = \frac{1}{3} \left(\pi - x^2 \right)^{\frac{-2}{3}} \cdot -2x$ or $\frac{dy}{dx} = \frac{-2x}{3\left(\pi - x^2 \right)^{\frac{2}{3}}}$	Correct derivative.		
(b)	$\frac{dy}{dx} = 3(x^3 - 2x)^2 \cdot (3x^2 - 2)$ At $x = 1$, $\frac{dy}{dx} = 3 \cdot (-1)^2 \cdot 1 = 3$ At $x = 1$, $y = -1$ y + 1 = 3(x - 1) y = 3x - 4	Correct solution with correct derivative shown.		
(c)	$f'(x) = 1 - e^{x} + \frac{k}{x^{2}}$ $f'(x) = 0 \implies 1 - e^{-1} + k = 0$ $k = e^{-1} - 1$ Or $k = -0.632$	Correct derivative.	Correct value for <i>k</i> and correct derivative.	
(d)(i) (ii) (iii)	1. $x = 1$ 2. $x > 3$ 3. $-2, -1, 3$ Does not exist.		THREE correct answers (out of 5).	
(e)	$A(\theta) = 64\sin\theta + 64\sin\theta\cos\theta$ OR $A(\theta) = 64\sin\theta + 32\sin 2\theta$ $A'(\theta) = 64\cos\theta + 64\cos^2\theta - 64\sin^2\theta$ OR $A'(\theta) = 64\cos\theta + 64\cos^2\theta - 64(1-\cos^2\theta)$ $= 64\cos\theta + 64\cos^2\theta - 64(1-\cos^2\theta)$ $= 64(2\cos^2\theta + \cos\theta - 1)$ Minimum when $A'(\theta) = 0$ $2\cos^2\theta + \cos\theta - 1 = 0$ $(2\cos\theta - 1)(\cos\theta + 1) = 0$ Or $\cos\theta = \frac{1}{2}$ or $\cos\theta = -1$ (NO) $\theta = 60^\circ$ or $\theta = \frac{\pi}{3}$		Correct derivative.	Correct solution with correct derivatives.

 $\mathbf{N}\mathbf{\emptyset} = \mathbf{N}\mathbf{o}$ response / no relevant evidence

- **N1** = ONE question demonstrating limited knowledge of differentiation techniques
- **N2** = ONE correct derivative
- A3 = TWO of Achievement
- **A4** = THREE of Achievement
- M5 = ONE of Merit
- M6 = TWO of Merit
- E7 = Excellence with minor errors ignored
- **E8** = Excellence correct

Three	Expected Coverage	Achievement	Merit	Excellence
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 \cdot \cos 2x \cdot 2 - 2x \sin 2x}{x^4}$	Correct derivative.		
(b)	$f'(x) = 1 - 16(x - 2)^{-2}$ Turning point when $f'(x) = 0$ $1 = \frac{16}{(x - 2)^2}$ $(x - 2)^2 = 16$ x = -2 or x = 6	Correct solution with correct derivative.		
(c)	$f'(x) = 50 - \left(30 \ln 2x + 30x \cdot \frac{1}{x}\right)$ $= 20 - 30 \ln 2x$ Maximum when $f'(x) = 0$ $20 = 30 \ln 2x$ $\frac{2}{3} = \ln 2x$ $x = \frac{e^{\frac{2}{3}}}{2} = 0.974$	Correct derivative.	Correct solution with correct derivative.	
(d)	For the curve, $\frac{dy}{dx} = \frac{3t^2 - 3}{2t - 1}$ Normal parallel to the <i>y</i> -axis means tangent parallel to the <i>x</i> -axis. $\Rightarrow \frac{dy}{dx} = 0$ $3t^2 = 3$ $t = \pm 1$ $t = 1 \Rightarrow \text{point } (0, -2)$ $t = -1 \Rightarrow \text{point } (2, 2)$	Correct expression for $\frac{dy}{dx}$	Correct solution with correct derivative.	

(e)	$\frac{dV}{dt} = 300$ $A = 4\pi r^{2} \implies \frac{dA}{dr} = 8\pi r$ $V = \frac{4}{3}\pi r^{3} \implies \frac{dV}{dr} = 4\pi r^{2}$ $\frac{dA}{dt} = \frac{dV}{dt} \cdot \frac{dA}{dr} \cdot \frac{dr}{dV}$ $= \frac{2400\pi r}{4\pi r^{2}}$ $= \frac{600}{r}$ $A = 7500 \implies 4\pi r^{2} = 7500$ $r = \sqrt{\frac{7500}{4\pi}} = 24.43 \text{ cm}$ $\therefore \frac{dA}{dt} = \frac{600}{24.43} = 24.56 \text{ cm}^{2} \text{ s}^{-1}$	Correct expressions for $\frac{dV}{dr}$ and $\frac{dA}{dr}$	Correct expressions for $\frac{dV}{dr}$, $\frac{dA}{dr}$ and $\frac{dA}{dt}$	Correct solution along with correct expressions for $\frac{dV}{dr}$, $\frac{dA}{dr}$ and $\frac{dA}{dt}$
-----	---	--	--	--

NØ = No response / no relevant evidence
N1 = ONE question demonstrating limited knowledge of differentiation techniques
N2 = ONE correct derivative
A3 = TWO of Achievement
A4 = THREE of Achievement
M5 = ONE of Merit
M6 = TWO of Merit
E7 = Excellence with minor errors ignored
E8 = Excellence correct

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 - 8	9 – 13	14 – 20	21 – 24