Assessment Schedule – 2019

Calculus: Apply differentiation methods in solving problems (91578) Evidence Statement

Q1	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$\frac{dy}{dx} = \frac{1}{2} \left(3x^2 - 1 \right)^{\frac{-1}{2}} .6x$ $= \frac{3x}{\sqrt{3x^2 - 1}}$	Correct derivative. Anything equivalent.		
(b)	$f'(t) = \frac{15}{3t - 1}$ $f'(4) = \frac{15}{11} \text{ or } 1.36$	Correct solution with correct derivative.		
(c)	Quotient rule $\frac{dy}{dx} = \frac{(1+x^2)2e^{2x} - e^{2x}(2x)}{(1+x^2)^2}$ OR Product rule $\frac{dy}{dx} = e^{2x}(-2x)(1+x^2)^{-2} + (1+x^2)^{-1}(2e^{2x})$ When $x = 2$, $\frac{dy}{dx} = \frac{6e^4}{25}$ or 13.1	Correct derivative.	Correct solution with correct derivative.	
(d)	$\frac{dy}{dx} = 3x^2 e^x + x^3 e^x$ $= x^2 e^x (3+x)$ $\frac{dy}{dx} < 0$ $\Rightarrow x^2 e^x (3+x) < 0$ $3+x < 0$ $x < -3$	Correct derivative.	Correct solution with correct derivative.	
(e)	$\frac{dV}{dt} = \frac{dS}{dt} \times \frac{dr}{dS} \times \frac{dV}{dr}$ $S = 4\pi r^{2} \Rightarrow \frac{dS}{dr} = 8\pi r$ $V = \frac{4}{3}\pi r^{3} \Rightarrow \frac{dV}{dr} = 4\pi r^{2}$ $\frac{dS}{dt} = 0.4 \text{ when } r = 0.5$ $\frac{dV}{dt} = 0.4 \times \frac{1}{8\pi r} \times 4\pi r^{2}$ $= 0.2r$ When $r = 0.5, \frac{dV}{dt} = 0.1 \text{ m}^{3} / s$	Correct expressions for $\frac{dS}{dr}$ and $\frac{dV}{dr}$.	Correct expression for $\frac{dV}{dt}$. Anything equivalent. Line 5 is ok.	Correct solution with correct derivatives. Units not required.

NCEA Level 3 Calculus (91578) 2019 — page 2 of 7

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE answer demonstrating limited knowledge of differentiation techniques.	lu	2u	3u	lr	2r	lt with minor error(s).	lt

Q2	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4(2x-5)^3.2$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 8(2x-5)^3$	Correct derivative.		
(b)	$\frac{dy}{dx} = 2\sec^2 2x$ $= \frac{2}{\cos^2 2x}$ At $x = \frac{\pi}{6}, \frac{dy}{dx} = \frac{2}{\cos^2 \frac{\pi}{3}} = 8$	Correct solution with correct derivative.		
(c)	$x = \frac{1}{(5-t)^2} = (5-t)^{-2}$ $\frac{dx}{dt} = -2(5-t)^{-3} \times -1$ $= \frac{2}{(5-t)^3}$ $\frac{dy}{dt} = 5-2t$ $\frac{dy}{dx} = \frac{(5-2t)(5-t)^3}{2}$ At $t = 2$, $\frac{dy}{dx} = \frac{1 \times 3^3}{2} = 13.5$	Correct expression for $\frac{dx}{dt}$.	Correct solution with correct derivatives shown.	
(d)	$\frac{d\theta}{dt} = 0.01 \text{ rad / s}$ $\frac{dh}{dt} = \frac{d\theta}{dt} \times \frac{dh}{d\theta}$ $\sin\theta = \frac{h}{22}$ $h = 22 \sin\theta$ $\frac{dh}{d\theta} = 22 \cos\theta$ $\therefore \frac{dh}{dt} = 0.22 \cos\theta$ $h = 15 \implies \theta = \sin^{-1} \left(\frac{15}{22}\right) = 0.75$ $\frac{dh}{dt} = 0.22 \cos(0.75) = 0.16 \text{ m s}^{-1}$	Correct expression for $\frac{dh}{d\theta}$.	Correct solution with correct derivative, $\frac{dh}{d\theta}$. Units not required.	

(e)	LHS $y = e^{\sin 2x}$ $\frac{dy}{dx} = e^{\sin 2x} \times 2\cos 2x$ $\frac{d^2y}{dx^2} = e^{\sin 2x} \times (-4\sin 2x) + e^{\sin 2x} \times (2\cos 2x)^2$	Correct expression for $\frac{dy}{dx}$ or $\frac{du}{dx}$.	Correct expressions for $\frac{d^2 y}{dx^2}$ in any equivalent form. Or correct RHS.	Complete proof. Accept in terms of <i>x</i> , <i>y</i> , and <i>u</i> .
	$u = \sin 2x$ $\frac{du}{dx} = 2\cos 2x$ $\frac{d^2u}{dx^2} = -4\sin 2x$ $u = e^{u}$			
	$y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{d^{2}y}{du^{2}} = e^{u}$			
	$\frac{d^2 y}{du^2} \times \left(\frac{du}{dx}\right)^2 + \frac{dy}{du} \times \frac{d^2 u}{dx^2}$ $= e^u \times \left(2\cos 2x\right)^2 + e^u \times \left(-4\sin 2x\right)$			
	$= e^{\sin x} \times (2\cos 2x)^{2} + e^{\sin x} \times (-4\sin 2x)$ Therefore LHS = RHS as required. $\frac{d^{2}y}{dx^{2}} = 4e^{\sin 2x} (\cos^{2} 2x - \sin 2x)$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE answer demonstrating limited knowledge of differentiation techniques.	lu	2u	3u	lr	2r	lt with minor error(s).	lt

Q3	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$-4\sin^{-2}x\cos x$ OR $-4\csc x\cot x$	Correct derivative.		
(b)(i)	1. $x = 2, x > 4$ 2. $x = -2, 1, 4$	Two correct solutions i.e. TWO		
(ii)	Does not exist.	of (i) 1, (i) 2 and (ii).		
(c)	$A(x) = x\left(4 - \sqrt{x}\right)$ $= 4x - x^{\frac{3}{2}}$ $A'(x) = 4 - \frac{3}{2}x^{\frac{1}{2}}$ Maximum area when $A'(x) = 0$ $\frac{3}{2}\sqrt{x} = 4$ $\sqrt{x} = \frac{8}{3}$ $x = \frac{64}{9}$ Area $= \frac{64}{9}\left(4 - \frac{8}{3}\right)$ $= \frac{64}{9} \times \frac{4}{3}$ $= \frac{256}{27} \left(=9\frac{13}{27}\right)$	Correct expression for $A'(x)$.	Correct solution with correct derivative.	
(d)	Accept 9.48 $(i) = 2 \sqrt{1 + 9} \sqrt{1 + 10}$	Correct derivative.	Correct solution	
(4)	$a(t) = 2e^{t} - 8e^{-t}$ $a(t) = 0$		with correct derivative.	
	$\Rightarrow 2e^{t} - 8e^{-t} = 0$ $2e^{t} = 8e^{-t}$			
	$e^{2t} = 4$ 2t = ln 4			
	$t = \frac{1}{2}\ln 4 \ (= \ln 2 = 0.693)$			

(e)	$y = 2\sqrt{36 - x^{2}}$ $\frac{dy}{dx} = (36 - x^{2})^{\frac{-1}{2}} - 2x$ $= \frac{-2x}{\sqrt{36 - x^{2}}}$ Gradient of tangent = $\frac{-2\sqrt{36 - x^{2}}}{(8 - x)}$ $= \frac{2\sqrt{36 - x^{2}}}{x - 8}$ $\therefore \frac{2\sqrt{36 - x^{2}}}{x - 8} = \frac{-2x}{\sqrt{36 - x^{2}}}$ $2(36 - x^{2}) = 16x - 2x^{2}$ $72 - 2x^{2} = 16x - 2x^{2}$	Correct $\frac{dy}{dx}$ of curve.	Correct $\frac{dy}{dx}$ of curve. AND Correct gradient of tangent. OR Correct equation of tangent involving expression for $\frac{dy}{dx}$.	Correct solution with correct derivatives.
	72 = 16x $x = 4.5$			
	Or alternatively:			
	$y = \frac{-2x}{\sqrt{36 - x^2}} \left(x - 8\right)$			
	$y = \frac{-2x}{\sqrt{36 - x^2}} + \frac{16x}{\sqrt{36 - x^2}}$			
	Substituting for <i>y</i> :			
	$2\sqrt{36-x^2} = \frac{-2x^2}{\sqrt{36-x^2}} + \frac{16x}{\sqrt{36-x^2}}$			
	$2(36 - x^2) = -2x^2 + 16x$			
	$36 - x^2 = -x^2 + 8x$			
	36 = 8x			
	<i>x</i> = 4.5			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE answer demonstrating limited knowledge of differentiation techniques.	lu	2u	3u	lr	2r	1t with minor error(s).	lt

Cut Scores

Not Achieved Achievement		Achievement with Merit	Achievement with Excellence	
0 – 8	9 – 14	15 – 20	21 – 24	